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Novel image fusion method based on discrete
fractional random transform
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We introduce a new spectrum transform into the image fusion field and propose a novel fusion method
based on discrete fractional random transform (DFRNT). In DFRNT domain, high amplitude spectrum
(HAS) and low amplitude spectrum (LAS) components carry different information of original images. For
different fusion goals, different fusion rules can be adopted in HAS and LAS components, respectively. The
proposed method is applied to fuse real multi-spectral (MS) and panchromatic (Pan) images. The fused
image is observed to preserve both spectral information of MS and spatial information of Pan. Spectrum
distribution of DFRNT is random and uniform, which guarantees that good information is reserved.
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Image fusion involves combining multiple images of the
same scene with complementary information to generate
a new composite image with more information and bet-
ter quality than the individual image obtained solely by
a single sensor. In remote sensing, multi-spectral (MS)
images sufficient spectral information but poor spatial
resolution, while panchromatic (Pan) images are marked
by high spatial resolution but low spectral information.
In this letter, we aim to achieve pixel-level fusion of MS
and Pan images to preserve spectral information while
enhancing spatial details, which can better serve appli-
cations such as land classification and road detection.

There are various fusion algorithms at the pixel
level, including intensity-hue-saturation (IHS), Brovey,
wavelet, and contourlet transforms[1−5]. IHS method
transforms three MS bands from red-green-blue (RGB)
space into IHS space to separate spatial information from
spectral components. After replacing intensity with Pan,
the merged result is converted back into RGB space. Al-
though this method can preserve high spatial resolution,
it distorts spectral information[6]. Brovey fusion is a sim-
ple color normalized method that commonly introduces
spectral distortion. In the contourlet method, down-
sampling and up-sampling processes prompt contourlet
transform to lose translation invariance and further in-
troduce the Gibbs effect in the resultant image.

For wavelet methods, the Pan and each band of MS im-
ages are decomposed into an approximation and a set of
detailed images. Band by band, the approximation image
from MS is combined with details from Pan. Then, in-
verse wavelet transform is performed to obtain the fused
images. This method can obtain sound fusion results;
however, the wavelet decomposition level produces an im-
pact on fusion performance. If the decomposition level is
low, fused images preserve more spectral characteristics
but fail to preserve spatial details appropriately. With a
higher level of decomposition, the performance of spatial
details gradually increases; however, the spectral infor-
mation cannot be preserved very well as low frequency
coefficients are decomposed repeatedly.

IHS and Brovey transforms are direct conversions be-

tween pixel values of images, while wavelet transform is
a joint space-frequency transform. Wavelet coefficients
straightly display approximate and detailed spatial im-
ages corresponding to original image. These types of
representations are marked by incompleteness and un-
certainty. Although wavelet has space and frequency
information, it has no exact transform domain. Two-
dimensional (2D) wavelet bases are isotropic and have
limited directional representations of image details. It is
noted that Fourier transform (FT) and fractional Fourier
transform (FrFT) are joint space-frequency transforms.
Their transform coefficients represent the contribution
of each basis function at each frequency, thus they have
exact transform domains. They can show the transform
spectrum, and spatial image can be obtained only after
inverse transform. FT and FrFT clearly display the fea-
tures of signals in frequency domain, which is difficult
to display in the spatial domain. Their kernel functions
allow the perfect frequency resolution to be obtained, as
the kernel per se is a window of infinite length. FT and
FrFT convert grayscale distribution of an image into its
frequency distribution, and frequency indicates the ex-
tent of change in gray scale. Therefore, performing fu-
sion in such transformed domains is an indirect change of
the original image simultaneously based on space image
features and different spectrum distribution features.

In this letter, we propose a novel fusion method based
on discrete fractional random transform (DFRNT)[7].
DFRNT originates from discrete fractional Fourier trans-
form (DFrFT)[8]. It features excellent mathematical
properties inherited from FrFT, in addition to a num-
ber of special spectrum distribution features of its own.
The randomness of DFRNT can randomly distribute the
changed information by fusion, which introduces lower in-
fluence than same-strength changes at the concentrated
location in spectra. This ensures less spectral distortion.
The uniformity of DFRNT ensures majority of accept-
able fusion results when distortions occur in any posi-
tion of the spectrum; this lends certain robustness to
the method. In the DFRNT domain, a nominal high-
frequency component with spatial details and a nomi-
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nal low-frequency component with spectral information
can be extracted. For different frequency components,
different fusion rules are utilized according to different
fusion goals. Furthermore, at half periodicity, DFRNT
produces real output for a real signal, which can save
storage space for image data, offering convenience for
storage, compared with the complex output.

For discrete transforms, kernel matrix is key. It can
be expressed as the product of eigenvector and eigen-
value matrices through eigendecomposition. Meanwhile,
DFRNT and DFrFT ultimately originate from discrete
Fourier transform (DFT). Eigendecomposition of DFT
are a set of Hermite-Gaussian functions, which are eigen-
functions of continuous FT. The FT is usually defined
as

X(ω) =
1√
2π

∞∫

−∞
x(t) exp(−iωt)dt,

x(t) =
1√
2π

∞∫

−∞
X(ω) exp(iωt)dω. (1)

Complex exponential (sines and cosines) functions as ba-
sis functions are orthogonal. For conventional DFT, ele-
ments of DFT kernel matrix F are defined by

Fnk =
1√
N

exp
(
−i

2πkn

N

)
, 0 ≤ n, k ≤ N − 1, (2)

where N pertains to element numbers (i.e., there
are N elements in the input vector for conventional
DFT). Kernel matrix of DFT has four eigenvalues:
{1, − i, − 1, i}. For DFT eigenvectors, any linear com-
binations with the same eigenvalues remain DFT eigen-
vectors. To avoid ambiguity in deciding eigenvectors, a
commuting matrix S (SF=FS) is introduced to compute
eigenvectors of F. S is defined as

S=




2 1 0 0 · · · 0 1
1 2 cos ω 1 0 · · · 0 0
0 1 2 cos 2ω 1 · · · 0 0
...

...
...

. . .
...

...
...

1 0 0 0 · · · 1 2 cos(N − 1)ω




, (3)

where ω = 2π/N. As a result of commutative property,
S and F have the same eigenvectors, though they corre-
spond to different eigenvalues. As S is a symmetric ma-
trix, its eigenvectors are all real and orthonormal to one
another. These eigenvectors construct an orthonormal
basis, which plays the same role as Hermite function in
the continuous case. Thus, eigendecomposition of DFT
kernel matrix F is written as

F =
∑

k∈E0

vkvt
k +

∑

k∈E1

(−i)vkvt
k

+
∑

k∈E2

(−1)vkvt
k +

∑

k∈E3

(i)vkvt
k, (4)

where superscript t denotes the transpose, E0 is a set of
indices for eigenvectors vk belonging to eigenvalue λk =
1, E1 for λk = −i, and so on. DFT has several math-
ematical properties, including linearity (F(ax1 + bx2) =

aFx1+bFx2), multiplicity (T = 4), and Parseval’s energy

conservation
(

N−1∑
n=0

|x(n)|2 = 1
N

N−1∑
k=0

|X(k)|2
)

. Spectrum

energy is usually highly concentrated at the origin of the
DFT coefficients matrix, which introduces large distor-
tion when performing fusion within.

For the FrFT, transform kernel is defined as

Kθ(v, u) =

√
1− i cot θ

2π
exp

[
i
(v2 + u2) cos θ − 2uv

2 sin θ

]

=
∞∑

n=0

exp (−inθ)hn(v)hn(u), (5)

where hn(·) is the nth order normalized Hermite-
Gaussian function. Equation (5) provides an eigende-
composition of continuous FrFT kernel, and illustrates
that eigenvectors of FrFT are Hermite functions. As
FrFT possesses the same eigenfunction as FT, eigenvec-
tors {vj

α}(j = 1, 2, · · · , N) of DFrFT can be calculated
through S, as defined in DFT. Thus, {vj

α} forms an or-
thonormal basis equivalent to Hermite-Gaussian polyno-
mials in continuous FrFT. Then, N ×N eigenvector ba-
sis matrix Vα is obtained as Vα = [v1

αv2
α · · ·vN

α ]. In
the calculation, DFT-shifted version of {vj

α} is needed.
From Eq. (5), eigenvalue of FrFT can be written as λk =
exp(−iαkπ/2), k = 0, 1, 2, · · · ,∞, where α is the frac-
tional order. In DFrFT, eigenvalues remain unchanged,
with only limited numbers (i.e., k = 0, 1, 2, · · · , N).
These eigenvalues construct a diagonal matrix Dα as

Dα =





diag(1, e−iαπ/2, · · · , e−iα(N−1)π/2),
N is odd

diag(1, e−iαπ/2, · · · , e−iα(N−2)π/2, e−iαNπ/2),
N is even

.

(6)
In Dα, there is a jump in the last eigenvalue for even N .
Such assignments of eigenvalues are consistent with the
multiplicity rule in DFT. Based on Vα and Dα, kernel
transform of DFrFT is defined as

Fα = VαDαVt
α. (7)

For one-dimensional (1D) signal x(n), DFrFT can
be expressed as Xα(n) = Fαx(n), and DFrFT is re-
duced into DFT with α = 1. As eigenvectors are or-
thonormal, VαVt

α = I (I is the identity matrix) and
D−α = D∗

α. These confirm that DFrFT has the same
properties as FrFT, including linearity, multiplicity, uni-
tarity (F−α = (Fα)∗), additivity (FαFβ = Fα+β), and
energy conservation. DFrFT is a generalized fractional
power form of DFT; its spectrum energy usually central-
izes at low frequency, but with relative decentralization
compared with DFT.

DFrFT has the same eigenvectors as DFT, but with
fractional power eigenvalues. Meanwhile, DFRNT has
the same eigenvalues as DFrFT, but with random eigen-
vectors. The whole generation process of DFRNT kernel
matrix is roughly the same as that in DFrFT. The essence
from DFrFT to DFRNT is to change S to a diagonal
random symmetric matrix Q, which introduces random-
ness of DFRNT. Matrix Q is generated by N × N real
random matrix E with a relation of Q = (E + Et)/2.
Kernel matrix Rα is defined in a commutative way
that RαQ = QRα. As Q is symmetric, eigenvectors



658 CHINESE OPTICS LETTERS / Vol. 8, No. 7 / July 10, 2010

{V′
Rj(j = 1, 2, · · · , N)} of Rα are all real and orthonor-

mal to one another. Then, {V′
Rj} is normalized to

{VRj} using the Schmidt standard normalization proce-
dure. Eigenvector matrix VR is composed of N column
vectors {VRj} obtained by [VR] = [VR1VR2 · · ·VRN ],
where VRVt

R = I. It is noted that DFT-shift is not
needed here, as eigenvectors are generated from a sym-
metrical random matrix. Coefficient matrix correspond-
ing to eigenvalues of DFRNT is defined as

DRα = diag
[
1, exp

(
− i

2πα

T

)
, · · · ,

exp
(
− i

2(N − 1)πα

T

)]
, (8)

where T indicates periodicity of DFRNT. Here, there is
no jump for odd and even integer N . Thus, Rα can be
constructed as Rα = VRDRαVt

R. DFRNT for 1D and
2D signals can be written respectively as

XR(α)(n) = Rαx(n) and XR(α) = Rαx(Rα)t. (9)

Eigenvectors of DFRNT depend on the random matrix
Q (or E). For different E, DFRNT outputs will be
different and always random. It should be noted that
DFRNT output for a real signal becomes a real number
when α is taken as hT/2, where h is an integer. As DRα

is real in this case, Rα is real as well. Real outputs can
save storage space of image compared with the complex
outputs.

DFRNT features excellent mathematical properties as
DFrFT, in addition to its own random and uniform spec-
trum distribution features (i.e., its spectrum energy is
dispersed uniformly). These properties may be compre-
hended directly from spectra of DFRNT and DFrFT,
(Fig. 1). For DFrFT, a few high amplitudes are con-
centrated at the origin, and many extremely low, even
zero, amplitudes are in other positions. In contrast, for
DFRNT, the spectrum with different values spreads out,
and many amplitudes can play roles in the fusion. Thus,
it has a lower influence on the same-strength changes
in spectra. This guarantees low spectral distortion. In
DFrFT, when large distortion occurs at the origin, fusion
results will be poor, and even the whole band informa-
tion is lost. In the uniform DFRNT, majority of fusion
results are acceptable, even distortion occurring at any
position. The uniformity confirms certain robustness.

In this letter, MS and Pan images are registered before
fusion. For each band, the proposed DFRNT fusion al-
gorithm is summarized as follows.

Step 1: Low-resolution MS is interpolated to high-
resolution Pan. Thus, MS is re-sampled to the same
pixel size as Pan using cubic interpolation.

Step 2: Pan image is modified using histogram match-
ing to allow its brightness and contrast to match that
of each MS image, band by band. More precisely, af-
ter computing histograms of both Pan and each band
MS images, the histogram of each band MS image is
used as reference to which the histogram of Pan image is
matched.

Fig. 1. Spectra of (a) DFRNT and (b) DFrFT for the 1st
band of TM image.

Step 3: Pan and all bands of MS images are trans-
formed to DFRNT domains.

Step 4: Substituting high-frequency component of MS
using the details of Pan results in spectral loss. Mean-
while, discarding low-frequency component of Pan results
in loss of spatial information. Fusion is performed at
both high- and low-frequency components. Then, fusion
results at these two components are combined to pro-
vide a high-resolution MS image. Weighted combination
principle is adopted as the fusion rule. When the contri-
bution of one image information is large, a large weight
coefficient is employed to preserve information adap-
tively into the fused image without losing information
of the other image. This is more scientific than merely
selecting the main contributive information of one im-
age. Furthermore, the weighted combination introduces
less information loss of the original images.

In DFRNT domain, the high amplitude spectrum
(HAS) component is the nominal low-frequency compo-
nent. Meanwhile, the low amplitude spectrum (LAS)
component is the nominal high-frequency component. As
a rule, majority of spectrum energy is carried in the low-
frequency component. In DFRNT, energy is calculated
through sorted spectrum amplitudes in a descending or-
der. Then, ratios of different parts of energy to the total
energy are calculated to extract HAS/LAS components.
When the ratio is extremely small, the LAS component
predominates in the transform spectrum. Thus, the fu-
sion result cannot preserve more spectral information. In
contrast, the fusion result cannot improve spatial resolu-
tion properly. The ratio with the best vision and evalua-
tion results as a whole serves as the separation threshold
to extract the HAS/LAS components.

Step 5: For the HAS component, the fusion goal is to
preserve spectral information as much as possible while
adding spatial details of Pan into the MS image. To min-
imize spectral distortion, only individual characteristics
of Pan are added to each corresponding MS band. The
common characteristic of MS and Pan in the HAS com-
ponent is

MP ′HAS(com) = min[M ′
HAS, P ′HAS], (10)

where M ′
HAS and P ′HAS are the HAS components of MS

and Pan images, respectively. The individual character-
istic of Pan in the HAS component is

P ′HAS(own) = P ′HAS −MP ′HAS(com). (11)

To further reduce spectral distortion by adding more spa-
tial information of Pan, individual characteristics of Pan
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are weighted into the MS according to the contribution
of Pan’s information over total information. If the contri-
bution is high, more spatial information of Pan is added
to improve spatial quality. If the contribution is low, in-
formation of MS becomes the main portion. Thus, less
spatial information of Pan is added to preserve spectral
information as much as possible. Therefore, fused spec-
trum of the HAS component is obtained using

F ′HAS = M ′
HAS +

P ′HAS

M ′
HAS + P ′HAS

P ′HAS(own). (12)

Step 6: For the LAS component, the fusion goal is to
improve spatial details of the fused image. In practice,
two source images commonly provide useful information
for fusion. If any part of any source image is discarded, it
may introduce information loss of the fused image. Thus,
the weighted combination rule is utilized in this letter.
To add greater spatial information, high weight for Pan
is performed when the contribution of Pan’s information
to the total information is low. For the same reason,
low weight for MS is performed when the contribution
of MS information to the total information is high. The
weighted combination rule for each band is utilized as

F ′LAS =
P ′LAS

M ′
LAS + P ′LAS

M ′
LAS+

M ′
LAS

M ′
LAS + P ′LAS

P ′LAS, (13)

where M ′
LAS, P ′LAS, and F ′LAS indicate LAS components

of MS, Pan, and fused images, respectively.
Step 7: Fused image is obtained after taking inverse

DFRNT for these fused spectrum bands.
Thematic mapper (TM) and Satellite Pour

I’Observation de da Terra (SPOT) Pan images reflect
considerable spectral variety. Color composite of TM
bands 5, 4, and 1 in red, green, and blue (TM 541RGB)
is selected for the illustration, as spectral range of these
bands is extremely different from that of SPOT Pan.
Thus, possible spectral distortion can be effectively
tested. As TM band 4 displayed in green has the lower
brightness compared with the other two bands, all TM
bands are linearly stretched with a 99% clipping at both
high and low ends of the image histograms. Such a
stretch lends an effective use of the whole pixel value
range (0–255 for 8-bit data). With all bands possessing
the same pixel value range, high-quality color composite
with rich and balanced colors is obtained to demonstrate
if any subtle color distortion has been introduced.

Resolutions of TM and SPOT Pan images are 30 and 10
m, respectively. SPOT Pan and re-sampled TM (10 m)
images are illustrated in Figs. 2(a) and (b). The fusion
result (10 m) is presented in Fig. 2(c). The performance
of DFRNT method is compared with the standard IHS
method. To validate the features of DFRNT, the per-
formance of DFRNT method is likewise compared with
that in the DFrFT domain using the same fusion process.
The results are presented in Figs. 2(d) and (e).

From these figures, it is observed that fused image
using DFRNT preserves majority of spectral informa-
tion of MS and improves spatial resolution. IHS method
distorts certain spectral information and improves spa-
tial resolution considerably. As for the fused image by
DFrFT, its spectral and spatial performances are both
inferior to the DFRNT method.

Performances of these algorithms are further evalu-
ated using objective quantitative assessment. Spectral
and spatial performances are evaluated using two sets
of criteria. Spectral quality of each fused image band
is measured by spectral discrepancy (SPD), correlation
coefficient (CC), and spectral angle mapper (SAM). At
each band, SPD function can be written as

SPD =

∑
r,c
|MF(r, c)−MR(r, c)|

N ×N
, (14)

where MF (r, c) and MR (r, c) denote pixel values of fused
and reference images at position (r, c), respectively. The
Wald protocol[9] is applied to compare performance at
the degraded scale. The original MS image at the reso-
lution of 30 m is utilized as reference image MR. Fused
image MF (30 m) is obtained by fusing the degraded
MS (90 m) and Pan images (30 m). Based on MF and
MR at degraded scale, SPD is computed. A small SPD
indicates sound spectral performance.

CC describes the correlation degree between two im-
ages:

Fig. 2. Experiment on TM and SPOT Pan images. (a) Pan
image; (b) re-sampled MS image; (c) fused image by DFRNT;
(d) fused image by IHS; and (e) fused image by DFrFT.

Table 1. Performance Evaluation of Different Fusion
Methods

Method Band CC SPD SAM AG Qavg

DFRNT

R 0.9498 13.6822 9.1233 30.8028

0.8739G 0.9564 12.9445 9.5021 28.8842

B 0.9675 9.9896 9.4667 23.4601

IHS

R 0.7896 25.2695 18.5662 37.1020

0.6536G 0.8260 22.6747 19.0140 34.0482

B 0.8894 16.5539 17.6773 26.5604

DFrFT

R 0.8968 18.2322 12.8715 19.1379

0.8657G 0.9469 12.9880 10.3967 17.8924

B 0.9725 8.1356 8.6837 15.5594
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CC =

N∑
r=1

N∑
c=1

[MF(r, c)− µMF ][MR(r, c)− µMR ]
√

N∑
r=1

N∑
c=1

[MF(r, c)− µMF ]2
N∑

r=1

N∑
c=1

[MR(r, c)− µMR ]2
, (15)

where µMF and µMR are the mean intensities of MF and
MR, respectively. CC actually depicts the spectral in-
formation kept degree of the fused image compared with
the original MS image. The ideal CC value is 1.

The SAM[10] describing the absolute value of spectral
angle between two vectors is defined as

SAM = arccos

M∑
m=1

smpm

√
M∑

m=1
(sm)2 ·

√
M∑

m=1
(pm)2

, (16)

where s = (s1, s2, · · · , sM ) and p = (p1, p2, · · · , pM ) de-
note spectral vectors of each reference and fused band,
respectively. SAM should be as close to zero as possi-
ble. The above indices only allow estimating the spectral
difference between corresponding bands of the original
and fused images. To estimate the global spectral qual-
ity, the following index is used.

Qavg =
|σz1z2 |

σz1 · σz2

· 2σz1 · σz2

σ2
z1

+ σ2
z2

· 2 |z1| · |z2|
|z1|2 + |z2|2

, (17)

where Qavg is a combination of three different factors[11],
z1 = a1 + ib1 + jc1 + kd1 and z2 = a2 + ib2 + jc2 + kd2

denote pixel quaternion vectors for four-band reference
and fused images, respectively. In the case of three com-
ponents, as for color images, the quaternion’s real part
is usually set equal to zero[12]. Here, Qavg is calculated
using a 16× 16 sliding window. The ideal value is 1.

For spatial quality, average gradient (AG) is employed.
AG describes the changing features of image texture and
detailed information. The larger the value of AG, the
higher the spatial quality. AG can be computed by

AG =
1

N ×N

N∑
r=1

N∑
c=1

√√√√
[

∂MF(r,c)
∂r

]2

+
[

∂MF(r,c)
∂c

]2

2
. (18)

Results of objective evaluation are listed in Table 1. It
can be observed that spectral distortion introduced by
the proposed DFRNT method is less than that based
on IHS and DFrFT. This is attributed to random and
uniform features of DFRNT spectrum distribution. As
shown in Fig. 1, changes introduced by fusion produce
a low influence on dispersed DFRNT spectrum, which is
propitious to maintaining the spectral information. For
DFrFT with centralized spectrum, changes introduce rel-
atively strong spectral distortion.

Spatial performance of IHS method is superior to that
of DFRNT. IHS method replaces the intensity compo-
nent using the whole Pan image, which improves the spa-
tial resolution considerably while severely distorting the

spectral information of the MS image. While in principle
based on the IHS transform, which usually only works
for three bands, the proposed method is extended to any
arbitrary number of spectral bands.

In conclusion, a new spectrum transform is introduced
into the image fusion field and a novel fusion method
based on DFRNT is proposed. DFRNT is a random
transform with fractional order originating from DFrFT.
In DFRNT transformed domain, high-amplitude and
low-amplitude spectrum components, which take spec-
tral information and spatial details, respectively, are ex-
tracted and fused with different fusion rules. The pro-
posed method can properly preserve both spectral and
high-resolution spatial information. Randomly and uni-
formly distributed spectrum makes changes by fusion
random and dispersed. Thus, it has low spectral dis-
tortion. Its effectiveness is demonstrated with real TM
and SPOT pan images. Furthermore, the feature of real
output of DFRNT at half period can save storage space
of image data, which is suitable for on-board processing.

This work was supported by the National Natural Sci-
ence Foundation of China under Grant Nos. 10674038
and 10974039.
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